Ley de la Gravitación Universal de Newton
La Ley de la Gravitación Universal de Newton establece que la fuerza que ejerce una partícula puntual con masa m1 sobre otra con masa m2 es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:
donde es el vector unitario que dirigido de la partícula 1 a la 2, esto es, en la dirección del vector , y es la constante de gravitación universal, siendo su valor aproximadamente 6,674 × 10−11 N·m2/kg2.
Por ejemplo, usando la ley de la Gravitación Universal, podemos calcular la fuerza de atracción entre la Tierra y un cuerpo de 50 kg. La masa de la Tierra es 5,974 × 1024 kg y la distancia entre el centro de gravedad de la Tierra (centro de la tierra) y el centro de gravedad del cuerpo es 6378,14 km (igual a 6378140 m, y suponiendo que el cuerpo se encuentre sobre la línea del Ecuador). Entonces, la fuerza es:
La fuerza con que se atraen la Tierra y el cuerpo de 50 kg es 490,062 N (Newtons,Sistema Internacional de Unidades), lo que representa 50 kgf (kilogramo-fuerza,Sistema Técnico), como cabía esperar, por lo que decimos simplemente que el cuerpo pesa 50 kg.
- Las fuerzas gravitatorias son siempre atractivas. El hecho de que los planetas describan una órbita cerrada alrededor del Sol indica este hecho. Una fuerza atractiva puede producir también órbitas abiertas pero una fuerza repulsiva nunca podrá producir órbitas cerradas.
- Tienen alcance infinito. Dos cuerpos, por muy alejados que se encuentren, experimentan esta fuerza.
- La fuerza asociada con la interacción gravitatoria es central.
A pesar de los siglos, hoy sigue utilizándose cotidianamente esta ley en el ámbito del movimiento de cuerpos incluso a la escala del Sistema Solar, aunque esté desfasada teóricamente. Para estudiar el fenómeno en su completitud hay que recurrir a la teoría de la Relatividad General.
LEYES DE KEPLER
PRIMERA LEY DE KEPLER (ÓRBITAS ELÍPTICAS)
Los planetas describen órbitas elípticas estando el Sol en uno de sus focos.
La elipse se ve como un círculo alargado: un eje largo, llamado eje mayor; perpendicular a el eje mayor está el eje menor el más corto. Los 2 focos están simétricamente localizados en cada lado del eje mayor.
Segunda ley
Los cuerpos celestes describen trayectorias en las que se cumple que: las áreas barridas por el radio vector en tiempos iguales son iguales. El radio vector va desde el foco de la elipse a la posición del planeta en cada instante.
La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio).
La demostración de la segunda ley de Kepler, se fundamenta en la conservación del momento angular lo cual es consecuencia de que la fuerza de gravedad corresponde a una fuerza central. Para ver esto, consideremos un planeta de masa, m, moviéndose alrededor del sol en una órbita elíptica.
La fuerza gravitacional que actúa sobre el planeta siempre se dirige a lo largo del radio vector, hacia el sol. Se le llama fuerza central a la fuerza de este tipo, dirigida hacia un punto fijo o en sentido contrario a él. El torque (momento de la fuerza) que actúa sobre el planeta debido a esta fuerza central es cero, ya que la fuerza F es paralela al radio r, esto es: M =r x F = 0
Tercera ley
Los cuadrados de los periodos de revolución son proporcionales a los cubos de la distancia promedio al sol.
Es decir el cuadrado de el periodo del planeta es proporcional a el cubo de la distancia promedio de la órbita del planeta.
A partir de la tercera ley, puede calcularse la distancia de un planeta al Sol una vez que se conoce su período.
A partir de la tercera ley, puede calcularse la distancia de un planeta al Sol una vez que se conoce su período.
La Ley de la Gravitación Universal permite explicar las leyes de Kepler sobre las órbitas planetarias:
Para un planeta de masa m a una distancia r del Sol, la atracción gravitatoria será la que obliga al planeta a describir su órbita, por lo que ha de ser la fuerza centrípeta que actúa sobre el planeta. Igualando ambas fuerzas, la masa del planeta puede simplificarse y podemos obtener el cuadrado de la velocidad angular del planeta, lo que nos indica que cuanto mayor sea la distancia al Sol (r), menor será la velocidad del planeta. La velocidad angular del planeta se puede escribir en función del periodo de su órbita. Si ahora realizamos el cuadrado y agrupamos periodo y radio en un miembro de la ecuación lo que aparece en el segundo miembro de la igualdad es una constante, que es justamente la tercera ley de Kepler.
No hay comentarios:
Publicar un comentario